

	
3GPP TSG-SA5 Meeting #154	S5-241567
Changsha, Hunan Province, China, 15th Apr 2024 - 19th Apr 2024
	CR-Form-v12.3

	CHANGE REQUEST

	

	
	28.623
	CR
	0345
	rev
	-
	Current version:
	18.6.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Rel-18 CR 28.623 Send all notifications for an alarm YANG

	
	

	Source to WG:
	Ericsson Hungary Ltd

	Source to TSG:
	S5

	
	

	Work item code:
	eSBMA
	
	Date:
	2024-04-06

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)
Rel-20	(Release 20)

	
	

	Reason for change:
	The description of the NTFSubscriptionControl IOC is updated in 28.622 to facilitate alarm filtering. The YANG code is updated accordingly.

	
	

	Summary of change:
	Update YANG description statement to follow TS 28.622 CR 0359

	
	

	Consequences if not approved:
	Mismatch between stage 2 and 3

	
	

	Clauses affected:
	Forge only

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	X
	
	 O&M Specifications
	TS/TR ... CR ... TS 28.622 CR 0359

	
	

	Other comments:
	This CR is dependent upon the 28.622 CR above.

YANG Forge MR link: https://forge.3gpp.org/rep/sa5/MnS/-/merge_requests/1084 at commit cafe57d6e6af2f5a85d9b3778437891a10ef6f02

	
	

	This CR's revision history:
	

*** START OF CHANGE 1 ***
*** yang-models/_3gpp-common-subscription-control.yang ***
<CODE BEGINS>
module _3gpp-common-subscription-control {
 yang-version 1.1;
 namespace "urn:3gpp:sa5:_3gpp-common-subscription-control";
 prefix "subscr3gpp";

 import _3gpp-common-top { prefix top3gpp; }
 import _3gpp-common-yang-extensions { prefix yext3gpp; }

 organization "3GPP SA5";
 contact "https://www.3gpp.org/DynaReport/TSG-WG--S5--officials.htm?Itemid=464";

 description "Defines IOCs for subscription and heartbeat control.
 Copyright 2024, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI,
 TTA, TTC). All rights reserved.";
 reference "3GPP TS 28.623
 Generic Network Resource Model (NRM)
 Integration Reference Point (IRP);
 Solution Set (SS) definitions
 3GPP TS 28.623";

 revision 2024-04-06 { reference CR-0345; }
 revision 2024-01-18 { reference "CR-0309 CR-0329" ; }
 revision 2023-09-18 { reference CR-0271 ; }
 revision 2023-08-10 { reference "CR0257 CR0260"; }
 revision 2022-10-20 { reference CR-0196; }
 revision 2021-01-16 { reference "CR-0120"; }
 revision 2020-08-26 { reference "CR-0106"; }
 revision 2019-11-29 { reference "S5-197648 S5-197647 S5-197829 S5-197828"; }

 grouping NtfSubscriptionControlGrp {
 description "Attributes of a specific notification subscription";

 leaf notificationRecipientAddress {
 type string;
 mandatory true;
 }

 leaf-list notificationTypes {
 type string;
 description "Defines the types of notifications that are candidates
 for being forwarded to the notification recipient.
 If the notificationTypes attribute is not supported or not present
 all candidate notifications types are forwarded to the notification;
 discriminated by notificationFilter attribute.";
 }

 choice scope {
 description "Describes which object instances are selected with
 respect to a base object instance.";

 case type-level {
 leaf scopeType {
 type enumeration {
 enum BASE_ONLY;
 enum BASE_ALL;
 enum BASE_NTH_LEVEL;
 enum BASE_SUBTREE;
 }
 mandatory true;
 description "If the optional scopeLevel parameter is not supported
 or absent, allowed values of scopeType are BASE_ONLY and BASE_ALL.

 The value BASE_ONLY indicates only the base object is selected.
 The value BASE_ALL indicates the base object and all of its
 subordinate objects (incl. the leaf objects) are selected.

 If the scopeLevel parameter is supported and present, allowed
 values of scopeType are BASE_ALL, BASE_ONLY, BASE_NTH_LEVEL
 and BASE_SUBTREE.

 The value BASE_NTH_LEVEL indicates all objects on the level,
 which is specified by the scopeLevel parameter, below the base
 object are selected. The base object is at scopeLevel zero.
 The value BASE_SUBTREE indicates the base object and all of its
 subordinate objects down to and including the objects on the level,
 which is specified by the scopeLevel parameter, are selected.
 The base object is at scopeLevel zero.";
 }

 leaf scopeLevel {
 when '../scopeType = "BASE_NTH_LEVEL" or ../scopeType = "BASE_SUBTREE"';
 type uint16;
 mandatory true;
 description "See description of scopeType.";
 }
 }
 case dataNodeSelector {
 leaf dataNodeSelector {
 type string;
 description "The value shall follow the rules of RFC 8641
 filter-spec";
 reference "RFC 8641 section 5.";
 }
 }
 }

 leaf notificationFilter {
 type string;
 description "Defines a filter to be applied to candidate notifications
 identified by the notificationTypes attribute.
 If notificationFilter is present, only notifications that pass the
 filter criteria are forwarded to the notification recipient; all other
 notifications are discarded.
 The filter can be applied to any field of a notification.

 The format of the string shall confrm to a
 JSON expressions (Jex) 'JexConditionsExpr'";
 reference "3GPP TS 32.161";
 }
 }

 grouping HeartbeatControlGrp {
 description "Attributes of HeartbeatControl.";

 leaf heartbeatNtfPeriod {
 type uint32;
 mandatory true;
 units seconds;
 description "Specifies the periodicity of heartbeat notification emission.
 The value of zero has the special meaning of stopping the heartbeat
 notification emission.";
 }

 leaf triggerHeartbeatNtf {
 type boolean;
 default false;
 description "Setting this attribute to 'true' triggers an immediate
 additional heartbeat notification emission. Setting the value to
 'false' has no observable result.

 The periodicity of notifyHeartbeat emission is not changed.

 After triggering the heartbeat the system SHALL set the value
 back to false.";
 yext3gpp:notNotifyable;
 }
 }

 grouping SubscriptionControlSubtree {
 description "Contains notification subscription related classes.
 Should be used in all classes (or classes inheriting from)
 - SubNetwork
 - ManagedElement

 If some YAM wants to augment these classes/list/groupings they must
 augment all user classes!";

 list NtfSubscriptionControl {
 description "NtfSubscriptionControl represents a notification
 subscription of a notification recipient.

 The scope attribute is used to select the data nodes included in the
 subscription. The base object instance of the scope is the object
 instance name-containing the NtfSubscriptionControl instance.
 The scope attribute is used to select managed object instances included
 in the subscription. The base object instance of the scope is the
 object instance name-containing the NtfSubscriptionControl instance.
 When the scope attribute is absent, all objects below and including
 the base object are scoped.

 For most notification types the scope needs to identify a set of
 managed object instances, such as for alarm notifications. For some
 notification types one or more attributes, attribute fields or
 attribute elements may be specified as well, though, such as for
 attribute value change notifications. Details on this matter are
 specified together with the definition of the notification type.

 Note that a scope may also include objects that are not created yet,
 for example, when a complete subtree is scoped, or when all objects
 with a specifc object class are scoped. Object instances added after
 creating the subscription are included in the subscription as well
 if not explicitely exluded.
 the base object are scoped. The notifications related to the selected
 managed object instances are candidates to be sent to the address
 specified by the notificationRecipientAddress attribute.

 The notificationTypes attribute and notificationFilter attribute
 allow MnS consumers to control which candidate notifications are
 sent to the notificationRecipientAddress.

 The notifications related to the selected data nodes are candidates
 to be sent to the address specified by the
 notificationRecipientAddress attribute.

 The notificationTypes attribute and notificationFilter attribute allow
 MnS consumers to control which candidate notifications are sent to the
 notificationRecipientAddress.

 If the notificationTypes attribute is present, its value identifies
 the notification types that are candidates to be sent to the
 notificationRecipientAddress. If the notificationTypes attribute is
 absent, notifications of all types are candidates to be sent to
 notificationRecipientAddress. Notification types supported in the
 NtfSubscriptionControl.notificationTypes attribute are the ones
 listed in the attribute SupportedNotifications.notificationTypes.

 If supported, the notificationFilter attribute defines a filter that
 is applied to the set of candidate notifications. The filter is
 applicable to all parameters of a notification. Only candidate
 notifications that pass the filter criteria are sent to the
 notificationRecipientAddress. If the notificationFilter attribute
 is absent, all candidate notificatios are sent to the
 notificationRecipientAddress. If the notificationFilter attribute is
 absent, all candidate notificatios are sent to the
 notificationRecipientAddress.

 The producer MnS sending the notification may force the sending of
 a notification to specific subscriptions, overriding the scope or
 notificationFilter attributes if they would prevent sending it.

 To receive notifications, a MnS consumer has to create a
 NtfSubscriptionControl instance on the MnS producer. A MnS consumer
 can create a subscription for another MnS consumer since it is not
 required the notificationRecipientAddress be his own address.

 When a MnS consumer does not wish to receive notifications any more
 the MnS consumer shall delete the corresponding NtfSubscriptionControl
 instance.

 When a subscription is created and the notification scope inludes the
 created subscription object and the subscribed notification types
 include notifications reporting object creation (notifyMOICreation or
 notifyMOIChanges), the first notification sent related to the new
 subscription shall report the creation of the NtfSubscriptionControl
 instance. Likewise, when a subscription is deleted and the notification
 scope inludes the deleted subscription object and the subscribed
 notification types include notifications reporting object deletion
 (notifyMOIDeletion or notifyMOIChanges), the last notification sent
 related to the subscription shall report the deletion of the
 NtfSubscriptionControl instance.

 Creation and deletion of NtfSubscriptionControl instances by MnS c
 onsumers is optional; when not supported, the NtfSubscriptionControl

 When a subscription is created and the notification scope inludes
 the created subscription object and the subscribed notification types
 include notifications reporting object creation (notifyMOICreation
 or notifyMOIChanges), the first notification sent related to the
 new subscription shall report the creation of the
 NtfSubscriptionControl instance. Likewise, when a subscription is
 deleted and the notification scope inludes the deleted subscription
 object and the subscribed notification types include notifications
 reporting object deletion (notifyMOIDeletion or notifyMOIChanges),
 the last notification sent related to the subscription shall report
 the deletion of the NtfSubscriptionControl instance.

 Creation and deletion of NtfSubscriptionControl instances by MnS
 consumers is optional; when not supported, the NtfSubscriptionControl
 instances may be created and deleted by the system or be
 pre-installed.";

 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses NtfSubscriptionControlGrp;
 }

 list HeartbeatControl {
 description "MnS consumers (i.e. notification recipients) use heartbeat
 notifications to monitor the communication channels between themselves
 and MnS producers configured to emit notifications.

 A HeartbeatControl instance allows controlling the emission of
 heartbeat notifications by MnS producers. The recipients of heartbeat
 notifications are specified by the notificationRecipientAddress
 attribute of the NtfSubscriptionControl instance containing the
 HeartbeatControl instance.

 Note that the MnS consumer managing the HeartbeatControl instance
 and the MnS consumer receiving the heartbeat notifications may not be
 the same.

 As a pre-condition for the emission of heartbeat notifications, a
 HeartbeatControl instance needs to be created. Creation of an instance
 with an initial non-zero value of the heartbeatNtfPeriod attribute
 triggers an immediate heartbeat notification emission. Creation of an
 instance with an initial zero value of the heartbeatPeriod attribute
 does not trigger an emission of a heartbeat notification. Deletion of
 an instance does not trigger an emission of a heartbeat notification.

 Once the instance is created, heartbeat notifications are emitted with
 a periodicity defined by the value of the heartbeatNtfPeriod
 attribute. No heartbeat notifications are emitted if the value is
 equal to zero. Setting a zero value to a non zero value, or a non zero
 value to a different non zero value, triggers an immediate heartbeat
 notification, that is the base for the new heartbeat period. Setting a
 non zero value to a zero value stops emitting heartbeats immediately;
 no final heartbeat notification is sent.

 Creation and deletion of HeartbeatControl instances by MnS Consumers
 is optional; when not supported, the HeartbeatControl instances may be
 created and deleted by the system or be pre-installed.

 Whether and when to emit heartbeat notifications is controlled by
 HeartbeatControl. Subscription for heartbeat is not supported via the
 NtfSubscriptionControl.";

 max-elements 1;
 key id;
 uses top3gpp:Top_Grp;

 container attributes {
 uses HeartbeatControlGrp;
 }
 }
 }
 }

 grouping SupportedNotificationsGrp {
 description "Attributes of SupportedNotifications.";

 leaf-list notificationTypes {
 type string;
 config false;
 description "List of notification types supported by the MnS producer";
 }

 leaf-list notificationProtocols {
 type enumeration {
 enum HTTP;
 enum HTTP_VES_ENCAPS;
 }
 config false;
 min-elements 1;
 description "List of protocols supported for notifications.";
 reference "3GPP TS 28.532";
 }
 }

 grouping SupportedNotificationsSubtree {
 description "Contains SupportedNotifications.";

 list SupportedNotifications {
 description "SupportedNotifications represents the notification related
 capabilities of a MnS producer.

 The notificationTypes attribute lists notificationTypes supported
 by the MnSProducer. Specific IOCs can be the source of a specific
 but not necessary every supported notificationType.

 The notificationProtocols attribute identifies the notification
 transport protocols supported by a MnS producer.";

 key id;
 uses top3gpp:Top_Grp;
 container attributes {
 uses SupportedNotificationsGrp;
 }
 }
 }
}
<CODE ENDS>
*** END OF CHANGE 1 ***

